Evasion

Chapter 17

Intrusion Detection System (IDS)

- Detects malicious activity in computer systems
 - Identifies and stops attacks in progress
 - Conducts forensic analysis once attack is over

The Value of IDS

- Monitors network resources to detect intrusions and attacks that were not stopped by preventative techniques (firewalls, packetfiltering routers, proxy servers)
- Compares traffic to signature files that recognize specific known types of attack
- Expands available options to manage risk from threats and vulnerabilities

Difficulties with IDS

- IDS must correctly identify intrusions and attacks
 - True positives
 - True negatives
- False negatives
 - IDS missed an attack
- False positives
 - Benign activity reported as malicious

Handling False Negatives and Positives

False negatives

- Obtain more coverage by using a combination of network-based and host-based IDS
- Deploy NIDS at multiple strategic locations in the network

False positives

Reduce number using the tuning process

Types of IDS

- Network-based IDS (NIDS)
 - Monitors network traffic
 - Provides early warning system for attacks
- Host-based IDS (HIDS)
 - Monitors activity on host machine
 - Able to stop compromises while they are in progress

NIDS

- Uses a dedicated platform for purpose of monitoring network activity
- Analyzes all passing traffic
- Sensors have two network connections
 - One operates in promiscuous mode to sniff passing traffic.
 - An administrative NIC sends data such as alerts to a centralized management system.
- Most commonly employed form of IDS

NIDS Architecture

- Place IDS sensors strategically to defend most valuable assets
- Typical locations of IDS sensors
 - Just inside the firewall
 - On the DMZ
 - On any subnets containing mission-critical servers

NIDS Signature Types

Signature-based IDS

 Looks for patterns in packet payloads that indicate a possible attack

Port signature

 Watches for connection attempts to a known or frequently attacked port

Header signatures

Watch for dangerous or illogical combinations in packet headers

NIDS Reactions

- TCP resets
- IP session logging
- Shunning or blocking

Host-Based IDS (HIDS)

- Primarily used to protect only critical servers
- Software agent resides on the protected system
- Detects intrusions by analyzing logs of operating systems and applications, resource utilization, and other system activity
- Use of resources can have impact on system performance

HIDS Method of Operation

- Auditing logs (system logs, event logs, security logs, syslog)
- Monitoring file checksums to identify changes
- Elementary network-based signature techniques including port activity
- Intercepting and evaluating requests by applications for system resources before they are processed
- Monitoring of system processes for suspicious activity

HIDS Active Monitoring Capabilities

- Log the event.
- Alert the administrator.
- Terminate the user login.
- Disable the user account.

Passive Detection Systems

- Can take passive action (logging and alerting) when an attack is identified
- Cannot take active actions to stop an attack in progress

Active Detection Systems

- Have logging, alerting, and recording features of passive IDS, with additional ability to take action against offending traffic
- Options
 - IDS shunning or blocking
 - TCP reset
- Used in networks where IDS administrator has carefully tuned the sensor's behavior to minimize number of false positive alarms

Signature and Anomaly-Based IDS

Signature detections

- Also known as misuse detection
- IDS analyzes information it gathers and compares it to a database of known attacks, which are identified by their individual signatures

Anomaly detection

 Creates a model of normal use and looks for activity that does not conform to that model

Honeypots

- False systems that lure intruders and that gather information on methods and techniques they use to penetrate networks—by purposely becoming victims of their attacks
- Simulate unsecured network services
- Make forensic process easy for investigators

Honeypot Deployment Goals

Goal

 Gather information on hacker techniques, methodology, and tools

Deployed for

- Conducting research into hacker methods
- Detecting attacker inside organization's network perimeter

Commercial Honeypots

- ManTrap
- Specter
- Smoke Detector
- NetFacade

Honeypot Deployment Options

For research purposes

Directly connect a honeypot to the Internet,
allowing the owner to collect the most data

For organizational security

 Deploy inside the network where it can serve to detect attackers and alert security administrators to their presence

Honeypot Design

- Must attract, and avoid tipping off, the attacker
- Must not become a staging ground for attacking other hosts inside or outside the firewall

Summary

- Explained intrusion detection systems and identified some of the major characteristics of intrusion detection products
- Detailed the differences between host-based and networkbased intrusion detection
- Identified active detection and passive detection features of both host- and network-based IDS products
- Explained honeypots and how they are employed to increase network security
- Outlined the proper response to an attack

