
Chapter 7
Phase3: Gaining Access Using

Application and Operating
System Attacks

Locating Exploits

♦Packet Storm Security
http://packetstorm.securify.com

♦Technotronic Security Information
http://www.technotronic.com

♦Security Focus Bugtraq Archives
http://www.securityfocus.com

http://packetstorm.securify.com/
http://www.technotronic.com/
http://www.securityfocus.com/

Fig 7.1 Searching Packet Storm for a common vulnerability exploit

Application &
Operating System Attacks

♦Stack-based buffer overflow attacks
♦Password attacks
♦Web application attacks

Stack-Based Buffer Overflow Attacks

♦Allows attacker a way to execute arbitrary
commands and take control of a vulnerable
machine

♦ “Smashing the Stack for Fun and Profit”
http://packetstorm.securify.com/docs/hack/smashstack.txt

♦Any poorly written application or operating
system component could have a stack-based
buffer overflow

http://packetstorm.securify.com/docs/hack/smashstack.txt

What is a Stack

♦A data structure that stores important
information for processes running on a
computer

♦Used to store information associated with
function calls on the computer

♦Used to store function call arguments,
return instruction pointer, frame pointer,
and local variables

Fig 7.2 Sample code with function call

Fig 7.3 A normal stack

Fig 7.4 Buffer Overflow sample program

Fig 7.5 A smashed stack

Contents of a Buffer Overflow
Exploit

♦NOP sled
– Series of “No Operation” instructions

♦Machine language code containing
attacker’s commands

♦Return pointer

Buffer Overflow documents
♦ Advanced Buffer Overflow Exploit paper

http://ohhara.sarang.net/security/adv.txt
♦ http://www.blackhad.com/presentations/bh-asia-

00/greg/greg-asia-00-stalking.ppt
♦ Windows buffer overflow

http://www.beavuh.org/dox/win32_oflow.txt
♦ eEye’s buffer overflow exploit on Windows NT

systems running IIS
http://www.eeye.com/html/advisories/AD19990608
.html

http://ohhara.sarang.net/security/adv.txt
http://www.blackhad.com/presentations/bh-asia-00/greg/greg-asia-00-stalking.ppt
http://www.blackhad.com/presentations/bh-asia-00/greg/greg-asia-00-stalking.ppt
http://www.beavuh.org/dox/win32_oflow.txt
http://www.eeye.com/html/advisories/AD19990608.html
http://www.eeye.com/html/advisories/AD19990608.html

Detection of Stack-based
overflows by network-based IDS
♦Match signatures associated with NOP sleds
♦ Identify typical machine language exploit

code to get attackers’ commands executed
♦Look for frequently used return pointers

associated with popular buffer overflows

ADMutate
♦ Tool used evade IDS detection of buffer overflows
♦ http://www.ktwo.ca/security.html
♦ exploit code fed into ADMutate which modifies

the exploit code while retaining the same ultimate
function
– NOP instruction replaced with other code that

functionally does nothing
– Main part of exploit code contains code to decrypt

encrypted instructions
– Least significant byte of Return Pointer modified

http://www.ktwo.ca/security.html

Things Attackers do after
Stack is Smashed

♦Force exploit code to spawn a command
shell and enter another command to be
executed by command shell

♦Shell and command will run under the
context of the vulnerable process

♦ Installing a backdoor using inetd
♦Backdooring with TFTP and Netcat
♦Shooting back an Xterm

Creating a Backdoor Using Inetd
- overflow buffer in some root-level program
to run the following command string

Backdooring via Netcat
♦ Netcat: A tool used to push a command shell

prompt across the network
♦ Overflow buffer of victim with command to

spawn a shell to download Netcat from attacker’s
machine via TFTP and then run Netcat

♦ Victim machine runs Netcat configure to execute a
shell and push it to the attacker’s machine

♦ Attacker’s machine is also running Netcat, but is
configured to wait for a connection from victim

Fig 7.6 Placing a backdoor using buffer
overflows, TFTP, and Netcat

Shooting back Xterms
♦Useful against networks that block

incoming connections but allow outgoing
connections

♦Allows attacks to gain command-line access
to victim machine
– victim machine’s configuration need not be

modified
– No additional software needs to be installed on

victim machine

Shooting Back Xterms
Step-by-Step

♦ Attacker configures his own machine to accept
incoming X sessions from the target machine via
“xhost +victim”

♦ Attacker overflows the buffer of vulnerable
program on the target machine with shell
command to run the Xterm program and directing
the display to the attacker’s machine

♦ Commands typed by attacker into Xterm are
executed on the victim machine.

Fig 7.7 Getting an Xterm using a buffer overflow

Examples of widely used Exploits

♦ IIS Unicode exploit which lets an attacker execute
commands on a Windows NT/2000 machine
running IIS
http://www.wiretrip.net/rft/p/doc.asp?id=57

♦ wu-ftp string input validation problem
http://www.kb.cert.org/vuls/id/29823

♦ Rainforest Puppy’s RDS exploit which lets an
attacker execute commands on a Windows NT
server running IIS
http://www.wiretrip.net/rft/p/doc.asp?id=1

http://www.wiretrip.net/rft/p/doc.asp?id=57
http://www.kb.cert.org/vuls/id/29823
http://www.wiretrip.net/rft/p/doc.asp?id=1

Security Mailing Lists

♦BugTraq
http://www.securityfocus.com/frames/?content=/f
orums/bugtraq/intro.html

♦CERT
http://www.cert.org/contact_cert/certmaillist.html

♦SANS Newsbite mailing list
http://www.sans.org

http://www.securityfocus.com/frames/?content=/forums/bugtraq/intro.html
http://www.securityfocus.com/frames/?content=/forums/bugtraq/intro.html
http://www.cert.org/contact_cert/certmaillist.html
http://www.sans.org/

Defenses against Stack-Based
Buffer Overflow Attacks

♦Keep systems patched
♦Subscribe to security mailing lists
♦Subscribe to vendors’ mailing lists
♦Remove unneeded services from servers
♦Control outgoing traffic such as X

Defenses against Stack-Based
Buffer Overflow Attacks (cont.)

♦Configure operating systems with
nonexecutable stack
– Solaris: add the following to /etc/system file

• set noexec_user_stack=1
• set noexec_user_stack_log=1

– Linux: apply a kernel patch
http://www.openwall.com/linux/README

– Windows NT: install SecureStack
http://www.securewave.com/products/securesta
ck/secure_stack.html

http://www.openwall.com/linux/README
http://www.securewave.com/products/securestack/secure_stack.html
http://www.securewave.com/products/securestack/secure_stack.html

Defenses against Stack-Based Buffer
Overflow for Software Developers

♦Avoid programming mistakes involving
allocation of memory space

♦Check the size of all user input
♦Use automated code-checking tools such as

ITS4 (It’s the Software, Stupid – Security
Scanner) http://www.cigital.com/its4/

http://www.cigital.com/its4/

Password Guessing Attacks

♦Users often choose passwords that are easy
to remember, but are also easily guessed

♦ default passwords used by vendors left
unchanged

♦Database of vendor default passwords
http://security.nerdnet.com

http://security.nerdnet.com/

Fig 7.8 An online database of default passwords

Password Guessing through
Login Scripting

♦ THC-Login Hacker tool http://thc.inferno.tusculum.edu
♦ Authforce http://kapheine.hypa.net/authforce/index.php
♦ brute_ssl and brute_web

http://packetstrom.security.com/Exploit_Code_archive/brute
_ssl.c
http://packetstrom.security.com/Exploit_Code_archive/brute
_web.c

♦ Windows NT password guessing
http://packetstorm.securify.com/NT/audit/nt.remotely.crack.
nt.passwords.zip

♦ Xavier http://www.btinernet.com/~lithiumsoft/
♦ Guessing email passwords using POP3 protocol:

Hypnopaedia
http://packetstorm.securify.com/Crackers/hypno.zip

♦ Other password guessing tools
http://packetstorm.securify.com/Crackers

http://thc.inferno.tusculum.edu/
http://kapheine.hypa.net/authforce/index.php
http://packetstrom.security.com/Exploit_Code_archive/brute_ssl.c
http://packetstrom.security.com/Exploit_Code_archive/brute_ssl.c
http://packetstrom.security.com/Exploit_Code_archive/brute_web.c
http://packetstrom.security.com/Exploit_Code_archive/brute_web.c
http://packetstorm.securify.com/NT/audit/nt.remotely.crack.nt.passwords.zip
http://packetstorm.securify.com/NT/audit/nt.remotely.crack.nt.passwords.zip
http://www.btinernet.com/~lithiumsoft/
http://packetstorm.securify.com/Crackers/hypno.zip
http://packetstorm.securify.com/Crackers

Password Cracking

♦More sophisticated and faster than password
guessing through login script

♦Requires access to a file containing user
names and encrypted passwords

♦Dictionary attacks
♦Brute force attacks
♦Hybrid dictionary and brute force attacks

Fig 7.9 Password cracking is really just a loop

Password Cracking Tools
♦ L0phtCrack, a Windows NT/2000 password

cracker http://www.l0pht.com/l0phtcrack
♦ John the Ripper, a Unix password cracker

http://www.openwall.com/john
♦ Crack, a Unix password cracker

http://www.users.diron.co.uk/~crypto/
♦ Pandora, a password cracker for Novell

http://www.nmrc.org/pandora
♦ PalmCrack, a Windows NT and Unix password

cracker that runs on the Palm OS PDA platform
http://www.noncon.org/noncon/download.html

http://www.l0pht.com/l0phtcrack
http://www.openwall.com/john
http://www.users.diron.co.uk/~crypto/
http://www.nmrc.org/pandora
http://www.noncon.org/noncon/download.html

L0phtCrack

♦Tool used to crack Windows NT/2000
passwords

♦Easy to use GUI interface
♦Runs on MS Windows 9x, NT, and 2000

systems
♦Free trial period of 15 days

Cracking Windows NT/2000
Passwords Using L0phtCrack

♦ Attacker must get a copy of the encrypted/hashed
password representations stored in the SAM
database of target machine

♦ L0phtCrack includes “pwdump” tool for dumping
Windows NT password representation from a
local or remote machine across the network
– Requires administrator privileges on target machine

♦ Pwdump3 http://www.ebiz-tech.com/pwdump3/
allows attacker to dump passwords from a SAM
database or a Windows 2000 Active Directory

http://www.ebiz-tech.com/pwdump3/

Cracking Windows NT/2000
Passwords Using L0phtCrack (cont.)

♦ Boot system from a Linux or DOS floppy disk and

retrieve SAM database at
%systemroot%\system32\config
– Since DOS cannot read NTFS partition, attacker can

use NTFSDOS program
http://packetstorm.securify.com/NT/hack/ntfsdos.zip to
access SAM database

– To access NT and 2000 passwords from Linux boot
disk
http://home.eunet.no/~pnordahl/ntpasswd/bootdisk.html

♦ Use L0phtCrack’s SMB Packet Capture tool to
sniff a user’s password off of the network

http://packetstorm.securify.com/NT/hack/ntfsdos.zip
http://home.eunet.no/~pnordahl/ntpasswd/bootdisk.html

Fig 7.10 Configuration options for L0phtCrack

Fig 7.11 Successful crack using L0phtCrack

Using L0phtCrack’s Sniffer
♦ make the password hash come to you for

authentication
– Send email containing URL

file://attacker-pc/sharename/message.html
– When victim clicks on URL, victim’s machine attempts

to mount the share on attacker’s server using a
challenge/handshake protocol

– Password hash is captured by attacker-pc running
L0phtcrack’s integrated sniffing tool

– Password hash is fed into L0phtcrack to retrieve user’s
password

Fig 7.12 Would you trust this email?

Fig 7.13 L0phtCrack’s integrated sniffer captures the
challenge/response from the network for cracking

Fig 7.14 Successful crack of sniffed challenge/response

John the Ripper

♦Used to crack Unix and WinNT passwords
♦Runs on Unix, Win9x, NT, and Win2000

systems
♦Automatically detects the encryption

algorithm used
♦Quickly generates many permutations for

password guesses based on a word list

Fig 7.15 When password shadowing is used, the /etc/passwd
file contains no password

Fig 7.16 The corresponding /etc/shadow file contains the
encrypted passwords

Retrieving the Encrypted
Password File

♦ find an exploit that will perform a stack-based
buffer overflow of an SUID root program to gain
root access

♦ Force a process that reads the encrypted password
file to generate a core dump (memory dump of a
dying process)
– Crash one instance of a FTP server
– Use another instance of the FTP server to transfer the

core file to look for passwords to crack

Configuring John the Ripper

♦Attacker must feed John with a file that has
all user account and password information

♦May need to merge /etc/password and
/etc/shadow via “unshadow”

Fig 7.17 Running the unshadow program from John the Ripper

Fig 7.18 Running John the Ripper to crack passwords

Defenses against
Password-Cracking Attacks

♦ Do not select passwords that can be easily guessed
by an automated tool

♦ Do not use dictionary terms
♦ Change passwords at specified intervals
♦ Know how to create a good password

– Use first letters of each word from a memorable phrase,
mixing in numbers and special characters

♦ Use password filtering software to prevent users
from choosing easily guessed passwords

♦ Use one-time password tokens or smart cards
♦ Use 2 or 3 factor authentication

Password Filtering Software
♦Unix platform

– Npasswd ftp.cc.utexas.edu/pub/npasswd
– Passwd+ ftp.dartmouth.edu/pub/security

♦Windows NT
– Passprop, available in MS WinNT Resource Kit
– Passfilt.dll included in Service Pack 2
– Password Guardian www.georgiasoftworks.com
– Strongpass http://ntsecurity.nu/toolbox
– Fast Lane http://www.fastlanetech.com

ftp://ftp.cc.utexas.edu/pub/npasswd
ftp://ftp.dartmouth.edu/pub/security
http://www.georgiasoftworks.com/
http://ntsecurity.nu/toolbox
http://www.fastlanetech.com/

Web Application Attacks
♦ Can be conducted even if the Web server uses

Secure Sockets Layer (SSL)
– SSL used to authenticate the Web server to the browser
– SSL used to prevent an attacker from intercepting

traffic
– SSL can be used to authenticate the client with client-

side certificates
♦ Web attacks can occur over SSL-encrypted

connection
– Account harvesting
– Undermining session tracking
– SQL Piggybacking

Account Harvesting

♦Technique used to determine legitimate
userIDs and even passwords of a vulnerable
application

♦Targets the authentication process when
application requests a userID and password

♦Works against applications that have a
different error message for users who type
in an incorrect userID

Fig 7.19 Mock Bank’s error message when a user types an invalid userID

Fig 7.20 Mock Bank’s error message when a user types a
valid userID, but the wrong password

Account Harvesting Defenses

♦Make sure that error message is the same
when a user types in an incorrect userID or
password

 Web Application Session
Tracking

♦ Most Web application generate a session ID to
track the user’s session.

♦ Session ID is passed back and forth across the
HTTP or HTTPS connection when client browses
web pages, enters data into forms, or conducting
transactions

♦ Session ID allows the Web application to maintain
the state of a session with a user

♦ Session ID is independent of the SSL connection
♦ Session ID is Application-level data

Implementing Session IDs in
Web Applications

♦ URL session tracking
– Session ID is written directly on browser’s location line

♦ Hidden form elements
– Hidden Session ID element put into the HTML form
– Session ID can be seen by user by viewing HTML source

code
<INPUT TYPE=“HIDDEN” MAME=“Session” VALUE=“22343”>

♦ Cookies
– Most widely used session-tracking method
– Cookie is an HTTP field that the browser stores on behalf of

Web server, containing info such as user preference and
session ID

– Per-session cookie is stored in browser’s memory
– Persistent cookie is written to the local file system of client

Fig 7.21 Session tracking using the URL

Attacking Session Tracking
Mechanisms

♦Attacker changes his session ID to a value
assigned to another user
– Application thinks that attacker is the other user

Fig 7.22 Editing persistent cookies to modify a session ID
using notepad

Achilles
♦ Tool used to edit per-session cookies
♦ www.digizen-securitycom
♦ A Web proxy
♦ Attacker’s browser configured to send all HTTP and

HTTPS data to Achilles
♦ Web browser and proxy can run on same or different

machines
♦ Archilles allows attacker to edit all HTTP/HTTPS

fields, per-session and persistent cookies, hidden
form elements, and URLs.

♦ Supports HTTPS connections
– one SSL connection set up between browser and Achilles
– Another SSL connection set up between Achilles and

Web server

http://www.digizen-securitycom/

Fig 7.24 The Achilles screen

Fig 7.25 Handling HTTPS with Achilles

Defending against Web Application
Session-Tracking Attacks

♦ Digitally sign or hash session-tracking information
♦ Encrypt information in the URL, hidden form

element, or cookie
♦ Make sure that your session IDs are long enough

to prevent accidental collision
♦ Apply a timestamp within the session ID variable

and encrypt it
♦ Allow users to terminate their sessions via a

logout button which will invalidate the session ID
♦ Scan your web site via AppScan

http://www.sanctuminc.com

http://www.sanctuminc.com/

SQL Piggybacking
♦ Attacker may can extend an application’s SQL

statement to extract or update information that the
attacker is not authorized to access

♦ “How I Hacked Packetstorm”
http://www.wiretrip.net/rfp/p/doc.asp?id=42

♦ Attacker will explore how the Web application
interacts with the back-end database by finding a
user-supplied input string that will be part of a
database query

http://www.wiretrip.net/rfp/p/doc.asp?id=42

Fig 7.26 Figuring out how the Web application interacts with a database

Fig 7.27 The location line contains the account number searched for

Fig 7.28 A very useful error message

SQL Statement used by application

Fig 7.29 Gaining unauthorized access with SQL piggybacking

Defenses against
Piggybacking SQL Commands

♦Web application must be programmed to
carefully filter user-supplied data

♦Potentially damaging characters (such as ‘ ”
` ; * % _) should be filtered at server side

♦World Wide Web Security FAQ
http://www.w3.org/Security/Faq/www-
security-faq.html

http://www.w3.org/Security/Faq/www-security-faq.html
http://www.w3.org/Security/Faq/www-security-faq.html

	Chapter 7 �Phase3: Gaining Access Using Application and Operating System Attacks
	Locating Exploits
	Fig 7.1 Searching Packet Storm for a common vulnerability exploit
	Application & �Operating System Attacks
	Stack-Based Buffer Overflow Attacks
	What is a Stack
	Fig 7.2 Sample code with function call
	Fig 7.3 A normal stack
	Fig 7.4 Buffer Overflow sample program
	Fig 7.5 A smashed stack
	Contents of a Buffer Overflow Exploit
	Buffer Overflow documents
	Detection of Stack-based overflows by network-based IDS
	ADMutate
	Things Attackers do after �Stack is Smashed
	Creating a Backdoor Using Inetd
	Backdooring via Netcat
	Fig 7.6 Placing a backdoor using buffer overflows, TFTP, and Netcat
	Shooting back Xterms
	Shooting Back Xterms�Step-by-Step
	Fig 7.7 Getting an Xterm using a buffer overflow
	Examples of widely used Exploits
	Security Mailing Lists
	Defenses against Stack-Based Buffer Overflow Attacks
	Defenses against Stack-Based Buffer Overflow Attacks (cont.)
	Defenses against Stack-Based Buffer Overflow for Software Developers
	Password Guessing Attacks
	Fig 7.8 An online database of default passwords
	Password Guessing through �Login Scripting
	Password Cracking
	Fig 7.9 Password cracking is really just a loop
	Password Cracking Tools
	L0phtCrack
	Cracking Windows NT/2000 Passwords Using L0phtCrack
	Cracking Windows NT/2000 Passwords Using L0phtCrack (cont.)
	Fig 7.10 Configuration options for L0phtCrack
	Fig 7.11 Successful crack using L0phtCrack
	Using L0phtCrack’s Sniffer
	Fig 7.12 Would you trust this email?
	Fig 7.13 L0phtCrack’s integrated sniffer captures the challenge/response from the network for cracking
	Fig 7.14 Successful crack of sniffed challenge/response
	John the Ripper
	Fig 7.15 When password shadowing is used, the /etc/passwd file contains no password
	Fig 7.16 The corresponding /etc/shadow file contains the encrypted passwords
	Retrieving the Encrypted Password File
	Configuring John the Ripper
	Fig 7.17 Running the unshadow program from John the Ripper
	Fig 7.18 Running John the Ripper to crack passwords
	Defenses against �Password-Cracking Attacks
	Password Filtering Software
	Web Application Attacks
	Account Harvesting
	Fig 7.19 Mock Bank’s error message when a user types an invalid userID
	Fig 7.20 Mock Bank’s error message when a user types a valid userID, but the wrong password
	Account Harvesting Defenses
	 Web Application Session Tracking
	Implementing Session IDs in Web Applications
	Fig 7.21 Session tracking using the URL
	Attacking Session Tracking Mechanisms
	Fig 7.22 Editing persistent cookies to modify a session ID using notepad
	Achilles
	Fig 7.24 The Achilles screen
	Fig 7.25 Handling HTTPS with Achilles
	Defending against Web Application Session-Tracking Attacks
	SQL Piggybacking
	Fig 7.26 Figuring out how the Web application interacts with a database
	Fig 7.27 The location line contains the account number searched for
	Fig 7.28 A very useful error message
	SQL Statement used by application
	Fig 7.29 Gaining unauthorized access with SQL piggybacking
	Defenses against �Piggybacking SQL Commands

