
Chapter 7  
Phase3:  Gaining Access Using 

Application and Operating 
System Attacks 



Locating Exploits 

♦Packet Storm Security 
http://packetstorm.securify.com 

♦Technotronic Security Information 
http://www.technotronic.com 

♦Security Focus Bugtraq Archives 
http://www.securityfocus.com 
 

http://packetstorm.securify.com/
http://www.technotronic.com/
http://www.securityfocus.com/


Fig 7.1  Searching Packet Storm for a common vulnerability exploit 



Application &  
Operating System Attacks 

♦Stack-based buffer overflow attacks 
♦Password attacks 
♦Web application attacks 



Stack-Based Buffer Overflow Attacks 

♦Allows attacker a way to execute arbitrary 
commands and take control of a vulnerable 
machine 

♦ “Smashing the Stack for Fun and Profit” 
http://packetstorm.securify.com/docs/hack/smashstack.txt 

♦Any poorly written application or operating 
system component could have a stack-based 
buffer overflow 

 
 
 

http://packetstorm.securify.com/docs/hack/smashstack.txt


What is a Stack 

♦A data structure that stores important 
information for processes running on a 
computer 

♦Used to store information associated with 
function calls on the computer 

♦Used to store function call arguments, 
return instruction pointer, frame pointer, 
and local variables 



Fig 7.2  Sample code with function call 



Fig 7.3 A normal stack 



Fig 7.4 Buffer Overflow sample program 



Fig 7.5  A smashed stack 



Contents of a Buffer Overflow 
Exploit  

♦NOP sled 
– Series of “No Operation” instructions 

♦Machine language code containing 
attacker’s commands 

♦Return pointer 



Buffer Overflow documents 
♦ Advanced Buffer Overflow Exploit paper 

http://ohhara.sarang.net/security/adv.txt 
♦ http://www.blackhad.com/presentations/bh-asia-

00/greg/greg-asia-00-stalking.ppt 
♦ Windows buffer overflow 

http://www.beavuh.org/dox/win32_oflow.txt 
♦ eEye’s buffer overflow exploit on Windows NT 

systems running IIS  
http://www.eeye.com/html/advisories/AD19990608
.html 

 
 

http://ohhara.sarang.net/security/adv.txt
http://www.blackhad.com/presentations/bh-asia-00/greg/greg-asia-00-stalking.ppt
http://www.blackhad.com/presentations/bh-asia-00/greg/greg-asia-00-stalking.ppt
http://www.beavuh.org/dox/win32_oflow.txt
http://www.eeye.com/html/advisories/AD19990608.html
http://www.eeye.com/html/advisories/AD19990608.html


Detection of Stack-based 
overflows by network-based IDS 
♦Match signatures associated with NOP sleds 
♦ Identify typical machine language exploit 

code to get attackers’ commands executed 
♦Look for frequently used return pointers 

associated with popular buffer overflows 
 



ADMutate 
♦ Tool used evade IDS detection of buffer overflows 
♦ http://www.ktwo.ca/security.html 
♦ exploit code fed into ADMutate which modifies 

the exploit code while retaining the same ultimate 
function 
– NOP instruction replaced with other code that 

functionally does nothing  
– Main part of exploit code contains code to decrypt 

encrypted instructions 
– Least significant byte of Return Pointer modified 

 
 

http://www.ktwo.ca/security.html


Things Attackers do after  
Stack is Smashed 

♦Force exploit code to spawn a command 
shell and enter another command to be 
executed by command shell 

♦Shell and command will run under the 
context of the vulnerable process 

♦ Installing a backdoor using inetd 
♦Backdooring with TFTP and Netcat 
♦Shooting back an Xterm 



Creating a Backdoor Using Inetd 
- overflow buffer in some root-level program 
to run the following command string 



Backdooring via Netcat 
♦ Netcat:  A tool used to push a command shell 

prompt across the network 
♦ Overflow buffer of victim with command to 

spawn a shell to download Netcat from attacker’s 
machine via TFTP and then run Netcat 

♦ Victim machine runs Netcat configure to execute a 
shell and push it to the attacker’s machine 

♦ Attacker’s machine is also running Netcat, but is 
configured to wait for a connection from victim 
 



Fig 7.6 Placing a backdoor using buffer 
overflows, TFTP, and Netcat 



Shooting back Xterms 
♦Useful against networks that block 

incoming connections but allow outgoing 
connections 

♦Allows attacks to gain command-line access 
to victim machine  
– victim machine’s configuration need not be 

modified 
– No additional software needs to be installed on 

victim machine 
 



Shooting Back Xterms 
Step-by-Step 

♦ Attacker configures his own machine to accept 
incoming X sessions from the target machine via 
“xhost +victim” 

♦ Attacker overflows the buffer of vulnerable 
program on the target machine with  shell 
command to run the Xterm program and directing 
the display to the attacker’s machine 

♦ Commands typed by attacker into Xterm are 
executed on the victim machine. 



Fig 7.7 Getting an Xterm using a buffer overflow 



Examples of widely used Exploits 

♦ IIS Unicode exploit which lets an attacker execute 
commands on a Windows NT/2000 machine 
running IIS 
http://www.wiretrip.net/rft/p/doc.asp?id=57 

♦ wu-ftp string input validation problem 
http://www.kb.cert.org/vuls/id/29823 

♦ Rainforest Puppy’s RDS exploit which lets an 
attacker execute commands on a Windows NT 
server running IIS 
http://www.wiretrip.net/rft/p/doc.asp?id=1 

 

http://www.wiretrip.net/rft/p/doc.asp?id=57
http://www.kb.cert.org/vuls/id/29823
http://www.wiretrip.net/rft/p/doc.asp?id=1


Security Mailing Lists 

♦BugTraq 
http://www.securityfocus.com/frames/?content=/f
orums/bugtraq/intro.html 

♦CERT 
http://www.cert.org/contact_cert/certmaillist.html 

♦SANS Newsbite mailing list  
http://www.sans.org 

 

http://www.securityfocus.com/frames/?content=/forums/bugtraq/intro.html
http://www.securityfocus.com/frames/?content=/forums/bugtraq/intro.html
http://www.cert.org/contact_cert/certmaillist.html
http://www.sans.org/


Defenses against Stack-Based 
Buffer Overflow Attacks 

♦Keep systems patched 
♦Subscribe to security mailing lists 
♦Subscribe to vendors’ mailing lists 
♦Remove unneeded services from servers 
♦Control outgoing traffic such as X 

 



Defenses against Stack-Based 
Buffer Overflow Attacks (cont.) 

♦Configure operating systems with 
nonexecutable stack 
– Solaris:  add the following to /etc/system file 

• set noexec_user_stack=1 
• set noexec_user_stack_log=1 

– Linux: apply a kernel patch 
http://www.openwall.com/linux/README 

– Windows NT: install SecureStack  
http://www.securewave.com/products/securesta
ck/secure_stack.html 

 

http://www.openwall.com/linux/README
http://www.securewave.com/products/securestack/secure_stack.html
http://www.securewave.com/products/securestack/secure_stack.html


Defenses against Stack-Based Buffer 
Overflow for Software Developers 

♦Avoid programming mistakes involving 
allocation of memory space 

♦Check the size of all user input 
♦Use automated code-checking tools such as 

ITS4 (It’s the Software, Stupid – Security 
Scanner)  http://www.cigital.com/its4/ 
 

http://www.cigital.com/its4/


Password Guessing Attacks 

♦Users often choose passwords that are easy 
to remember, but are also easily guessed 

♦ default passwords used by vendors left 
unchanged  

♦Database of vendor default passwords  
http://security.nerdnet.com 

 
 

http://security.nerdnet.com/


Fig 7.8  An online database of default passwords 



Password Guessing through  
Login Scripting 

♦ THC-Login Hacker tool http://thc.inferno.tusculum.edu 
♦ Authforce http://kapheine.hypa.net/authforce/index.php 
♦  brute_ssl and brute_web 

http://packetstrom.security.com/Exploit_Code_archive/brute
_ssl.c 
http://packetstrom.security.com/Exploit_Code_archive/brute
_web.c  

♦ Windows NT password guessing 
http://packetstorm.securify.com/NT/audit/nt.remotely.crack.
nt.passwords.zip 

♦ Xavier http://www.btinernet.com/~lithiumsoft/ 
♦ Guessing email passwords using POP3 protocol: 

Hypnopaedia 
http://packetstorm.securify.com/Crackers/hypno.zip 

♦ Other password guessing tools 
http://packetstorm.securify.com/Crackers 

 

http://thc.inferno.tusculum.edu/
http://kapheine.hypa.net/authforce/index.php
http://packetstrom.security.com/Exploit_Code_archive/brute_ssl.c
http://packetstrom.security.com/Exploit_Code_archive/brute_ssl.c
http://packetstrom.security.com/Exploit_Code_archive/brute_web.c
http://packetstrom.security.com/Exploit_Code_archive/brute_web.c
http://packetstorm.securify.com/NT/audit/nt.remotely.crack.nt.passwords.zip
http://packetstorm.securify.com/NT/audit/nt.remotely.crack.nt.passwords.zip
http://www.btinernet.com/~lithiumsoft/
http://packetstorm.securify.com/Crackers/hypno.zip
http://packetstorm.securify.com/Crackers


Password Cracking 

♦More sophisticated and faster than password 
guessing through login script 

♦Requires access to a file containing user 
names and encrypted passwords  

♦Dictionary attacks 
♦Brute force attacks 
♦Hybrid dictionary and brute force attacks 
 



Fig 7.9  Password cracking is really just a loop 



Password Cracking Tools 
♦ L0phtCrack, a Windows NT/2000 password 

cracker http://www.l0pht.com/l0phtcrack 
♦ John the Ripper, a Unix password cracker 

http://www.openwall.com/john 
♦ Crack, a Unix password cracker 

http://www.users.diron.co.uk/~crypto/ 
♦ Pandora, a password cracker for Novell  

http://www.nmrc.org/pandora 
♦ PalmCrack, a Windows NT and Unix password 

cracker that runs on the Palm OS PDA platform  
http://www.noncon.org/noncon/download.html 

 

http://www.l0pht.com/l0phtcrack
http://www.openwall.com/john
http://www.users.diron.co.uk/~crypto/
http://www.nmrc.org/pandora
http://www.noncon.org/noncon/download.html


L0phtCrack 

♦Tool used to crack Windows NT/2000 
passwords 

♦Easy to use GUI interface 
♦Runs on MS Windows 9x, NT, and 2000 

systems 
♦Free trial period of 15 days 

 



Cracking Windows NT/2000 
Passwords Using L0phtCrack 

♦ Attacker must get a copy of the encrypted/hashed 
password representations stored in the SAM 
database of target machine 

♦ L0phtCrack includes “pwdump” tool for dumping 
Windows NT password representation from a 
local or remote machine across the network 
– Requires administrator privileges on target machine 

♦ Pwdump3 http://www.ebiz-tech.com/pwdump3/ 
allows attacker to dump passwords from a SAM 
database or a Windows 2000 Active Directory  

 

http://www.ebiz-tech.com/pwdump3/


Cracking Windows NT/2000 
Passwords Using L0phtCrack (cont.) 
 
♦ Boot system from a Linux or DOS floppy disk and 

retrieve SAM database at 
%systemroot%\system32\config 
– Since DOS cannot read NTFS partition, attacker can 

use NTFSDOS program 
http://packetstorm.securify.com/NT/hack/ntfsdos.zip to 
access SAM database 

– To access NT and 2000 passwords from Linux boot 
disk 
http://home.eunet.no/~pnordahl/ntpasswd/bootdisk.html 

♦ Use L0phtCrack’s SMB Packet Capture tool to 
sniff a user’s password off of the network 
 
 

http://packetstorm.securify.com/NT/hack/ntfsdos.zip
http://home.eunet.no/~pnordahl/ntpasswd/bootdisk.html


Fig 7.10  Configuration options for L0phtCrack 



Fig 7.11  Successful crack using L0phtCrack 



Using L0phtCrack’s Sniffer 
♦ make the password hash come to you for 

authentication 
– Send email containing URL  

file://attacker-pc/sharename/message.html 
– When victim clicks on URL, victim’s machine attempts 

to mount the share on attacker’s server using a 
challenge/handshake protocol 

– Password hash is captured by attacker-pc  running 
L0phtcrack’s integrated sniffing tool  

– Password hash is fed into L0phtcrack to retrieve user’s 
password 
 
 

 



Fig 7.12  Would you trust this email? 



Fig 7.13  L0phtCrack’s integrated sniffer captures the 
challenge/response from the network for cracking 



Fig 7.14 Successful crack of sniffed challenge/response 



John the Ripper 

♦Used to crack Unix and WinNT passwords  
♦Runs on Unix, Win9x, NT, and Win2000 

systems 
♦Automatically detects the encryption 

algorithm used  
♦Quickly generates many permutations for 

password guesses based on a word list 



Fig 7.15 When password shadowing is used, the /etc/passwd 
file contains no password 



Fig 7.16  The corresponding /etc/shadow file contains the 
encrypted passwords 



Retrieving the Encrypted 
Password File 

♦ find an exploit that will perform a stack-based 
buffer overflow of an SUID root program to gain 
root access 

♦ Force a process that reads the encrypted password 
file to generate a core dump (memory dump of a 
dying process) 
– Crash one instance of a FTP server 
– Use another instance of the FTP server to transfer the 

core file to look for passwords to crack  



Configuring John the Ripper 

♦Attacker must feed John with a file that has 
all user account and password information 

♦May need to merge /etc/password and 
/etc/shadow via “unshadow” 

 



Fig 7.17  Running the unshadow program from John the Ripper 



Fig 7.18  Running John the Ripper to crack passwords 



Defenses against  
Password-Cracking Attacks 

♦ Do not select passwords that can be easily guessed 
by an automated tool 

♦ Do not use dictionary terms 
♦ Change passwords at specified intervals 
♦ Know how to create a good password 

– Use first letters of each word from a memorable phrase, 
mixing in numbers and special characters 

♦ Use password filtering software to prevent users 
from choosing easily guessed  passwords 

♦ Use one-time password tokens or smart cards 
♦ Use 2 or 3 factor authentication 



Password Filtering Software 
♦Unix platform 

– Npasswd ftp.cc.utexas.edu/pub/npasswd 
– Passwd+ ftp.dartmouth.edu/pub/security 

♦Windows NT 
– Passprop, available in MS WinNT Resource Kit 
– Passfilt.dll included in Service Pack 2 
– Password Guardian www.georgiasoftworks.com 
– Strongpass http://ntsecurity.nu/toolbox 
– Fast Lane http://www.fastlanetech.com 

 
 

ftp://ftp.cc.utexas.edu/pub/npasswd
ftp://ftp.dartmouth.edu/pub/security
http://www.georgiasoftworks.com/
http://ntsecurity.nu/toolbox
http://www.fastlanetech.com/


Web Application Attacks 
♦ Can be conducted even if the Web server uses 

Secure Sockets Layer (SSL) 
– SSL used to authenticate the Web server to the browser  
– SSL used to prevent an attacker from intercepting 

traffic 
– SSL can be used to authenticate the client with client-

side certificates 
♦ Web attacks can occur over SSL-encrypted 

connection 
– Account harvesting 
– Undermining session tracking 
– SQL Piggybacking 



Account Harvesting 

♦Technique used to determine legitimate 
userIDs and even passwords of a vulnerable 
application 

♦Targets the authentication process when 
application requests a userID and password 

♦Works against applications that have a 
different error message for users who type 
in an incorrect userID 
 



Fig 7.19  Mock Bank’s error message when a user types an invalid userID 



Fig 7.20  Mock Bank’s error message when a user types a 
valid userID, but the wrong password 



Account Harvesting Defenses 

♦Make sure that error message is the same  
when a user types in an incorrect userID or 
password 



 Web Application Session 
Tracking 

♦ Most Web application generate a session ID to 
track the user’s session. 

♦ Session ID is passed back and forth across the 
HTTP or HTTPS connection when client browses 
web pages, enters data into forms, or conducting 
transactions 

♦ Session ID allows the Web application to maintain 
the state of a session with a user 

♦ Session ID is independent of the SSL connection 
♦ Session ID is Application-level data 



Implementing Session IDs in 
Web Applications 

♦ URL session tracking 
– Session ID is written directly on browser’s location line 

♦ Hidden form elements 
– Hidden Session ID element put into the HTML form 
– Session ID can be seen by user by viewing HTML source 

code 
<INPUT TYPE=“HIDDEN” MAME=“Session” VALUE=“22343”> 

♦ Cookies 
– Most widely used session-tracking method 
– Cookie is an HTTP field that the browser stores on behalf of  

Web server, containing info such as user preference and 
session ID 

– Per-session cookie is stored in browser’s memory 
– Persistent cookie is written to the local file system of client 

 



Fig 7.21  Session tracking using the URL 



Attacking Session Tracking 
Mechanisms 

♦Attacker changes his session ID to a value 
assigned to another user 
– Application thinks that attacker is the other user 

 
 



Fig 7.22  Editing persistent cookies to modify a session ID 
using notepad 



Achilles 
♦ Tool used to edit per-session cookies 
♦ www.digizen-securitycom 
♦ A Web proxy 
♦ Attacker’s browser configured to send all HTTP and 

HTTPS data to Achilles 
♦ Web browser and proxy can run on same or different 

machines  
♦ Archilles allows attacker to edit all HTTP/HTTPS 

fields, per-session and persistent cookies, hidden 
form elements, and URLs. 

♦ Supports HTTPS connections 
– one SSL connection set up between browser and Achilles  
– Another SSL connection set up between Achilles and 

Web server 

http://www.digizen-securitycom/


Fig 7.24  The Achilles screen 



Fig 7.25  Handling HTTPS with Achilles 



Defending against Web Application 
Session-Tracking Attacks 

♦ Digitally sign or hash session-tracking information 
♦ Encrypt information in the URL, hidden form 

element, or cookie 
♦ Make sure that your session IDs are long enough 

to prevent accidental collision 
♦ Apply a timestamp within the session ID variable 

and encrypt it 
♦ Allow users to terminate their sessions via a 

logout button which will invalidate the session ID 
♦ Scan your web site via  AppScan 

http://www.sanctuminc.com  
 

http://www.sanctuminc.com/


SQL Piggybacking 
♦ Attacker may can extend an application’s SQL 

statement  to extract or update information that the 
attacker is not authorized to access 

♦ “How I Hacked Packetstorm”  
http://www.wiretrip.net/rfp/p/doc.asp?id=42 

♦ Attacker will explore how the Web application 
interacts with the back-end database by finding a 
user-supplied input string that will be part of a 
database query 

http://www.wiretrip.net/rfp/p/doc.asp?id=42


Fig 7.26 Figuring out how the Web application interacts with a database 



Fig 7.27  The location line contains the account number searched for 



Fig 7.28 A very useful error message 



SQL Statement used by application 



Fig 7.29  Gaining unauthorized access with SQL piggybacking 



Defenses against  
Piggybacking SQL Commands 

♦Web application must be programmed to 
carefully filter user-supplied data 

♦Potentially damaging characters (such as ‘ ”   
` ; * % _  ) should be filtered at server side 

♦World Wide Web Security FAQ  
http://www.w3.org/Security/Faq/www-
security-faq.html 

 

http://www.w3.org/Security/Faq/www-security-faq.html
http://www.w3.org/Security/Faq/www-security-faq.html
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